Math 524 Exam 3 Solutions

Problems 1-4 are for the vector space $\mathbb{R}_{2}[t]$, real polynomials of degree at most 2 . We define $L: \mathbb{R}_{2}[t] \rightarrow \mathbb{R}_{2}[t]$ via $L(f)=(t-1) \frac{d f}{d t}$.

1. Directly calculate $[L]_{E}$, for the basis $E=\left\{1, t, t^{2}\right\}$.

We again apply L to each basis element: $L(1)=0, L(t)=t-1, L\left(t^{2}\right)=$ $2 t^{2}-2 t$. Hence $[L]_{E}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2\end{array}\right)$.
2. Directly calculate $[L]_{B}$, for the basis $B=\left\{1, t-1,(t-1)^{2}\right\}$.

We apply L to each basis element: $L(1)=0, L(t-1)=t-1, L\left((t-1)^{2}\right)=$ $2(t-1)^{2}$. These are very easy to express as linear combinations of B, hence $[L]_{B}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. Note that this basis is more natural for dealing with L.
3. Calculate $P_{B E}, P_{E B}$, and demonstrate the relationship between them and $[L]_{B},[L]_{E}$.

It is simpler to begin with $P_{E B}=\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)$, then $P_{B E}=P_{E B}^{-1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$. There are several ways to express the mutual relationship; for example $[L]_{B}=$ $P_{B E}[L]_{E} P_{E B} .\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)$.
4. Find a basis for the kernel of L. Find a basis for the range of L.

Looking at $[L]_{B}$, we can see that the kernel is 1-dimensional and the range is 2-dimensional. A basis for the kernel will consist of a single element that L sends to 0 , for example $\{1\}$. A basis for the range will consist of two linearly independent elements from the range, for example $\left\{t-1,2 t^{2}-2 t\right\}$.
5. Consider the operator $M: \mathbb{R}[t] \rightarrow \mathbb{R}[t]$, an operator on real polynomials given by $M(f)=\frac{d^{2} f}{d t^{2}}$. Calculate the nullity of M, and prove that M is onto. Why doesn't this contradict the Dimension Theorem?

The kernel of M is those polynomials whose second derivative equals zero. This is precisely $\mathbb{R}_{1}[t]=\{a+b t: a, b \in \mathbb{R}\}$, which is of dimension 2 . Hence the nullity of M is 2 . Yet M is onto, because every polynomial is twiceintegrable (i.e. given any polynomial f, there is at least one polynomial g such that $\left.\frac{d^{2} g}{d t^{2}}=f\right)$. This does not violate the Dimension Theorem because $\mathbb{R}[t]$ is infinite-dimensional.

